
Hyper-heuristics and Classifier Systems for Solving
2D-Regular Cutting Stock Problems

H. Terashima-Marı́n
ITESM-Center for Intelligent

Systems
Av. E. Garza Sada 2501

Monterrey, NL, 64849 Mexico

terashima@itesm.mx

E. J. Flores-Álvarez
ITESM-Center for Intelligent

Systems
Av. E. Garza Sada 2501

Monterrey, NL, 64849, Mexico

floresedgardo@yahoo.com

P. Ross
School of Computing

Napier University
Edinburgh EH10 5DT UK

P.Ross@napier.ac.uk

ABSTRACT
This paper presents a method for combining concepts of
Hyper-heuristics and Learning Classifier Systems for solv-
ing 2D Cutting Stock Problems. The idea behind Hyper-
heuristics is to discover some combination of straightfor-
ward heuristics to solve a wide range of problems. To be
worthwhile, such combination should outperform the single
heuristics. In this paper, the Hyper-heuristic is formed us-
ing a XCS-type Learning Classifier System which learns a
solution procedure when solving individual problems. The
XCS evolves a behavior model which determines the pos-
sible actions (selection and placement heuristics) for given
states of the problem. When tested with a collection of dif-
ferent problems, the method finds very competitive results
for most of the cases. The testebed is composed of problems
used in other similar studies in the literature. Some addi-
tional instances of the testbed were randomly generated.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence

General Terms
Algorithms

Keywords
Evolutionary Computation, Hyper-heuristics, Classifier Sys-
tems, Optimization, Cutting Stock

1. INTRODUCTION
Cutting stock is a problem widely studied because it has

many applications ranging from clothing and metal to engi-
neering and shipbuilding. The problem belongs to the class
of most difficult problems known as NP-hard [10]. Given
a set of pieces, the problem is to generate cutting patterns

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

from sheets of stock material, or objects, that optimize cer-
tain objectives, such as to minimize the trim loss, or the
number of objects used. In this particular investigation
problems involve only 2D-rectangular pieces. Since many
precise requirements and constraints vary from industry to
industry, many different approaches and techniques have
been proposed for solving the problem [15]. For small com-
binatorial problems, exact methods like linear programming
can be applied. However, when larger and more complex
problems appear, exact solutions are not an option since
the search space grows exponentially, and so the time for
finding the optimal solution. Various heuristic and approxi-
mate approaches have been proposed that guarantee finding
near optimal solutions. However, it has not been possible
to find a reliable method to solve all instances of a given
problem. In general, some methods work well for particular
instances, but not for all of them.

The primary purpose of this paper is to explore an idea
previously developed for one-dimensional bin packing [22],
and extend that idea to solve 2D-rectangular cutting stock
problems. There are similarities between the two problems,
so heuristics developed for bin packing can also be used in
the solution process for the 2D-cutting stock problem. The
model uses a learning mechanism based on what is known in
the Evolutionary Computation field, as Learning Classifier
Systems (LCS). In their paper and also in our research, a
particular type of LCS is used, the XCS, which is based
on the accuracy of the prediction, and it is used to learn a
set of rules which associates features in the problem state
with various heuristics. This is the concept known as hyper-
heuristic.

A hyper-heuristic is used to define a high-level heuristic
that controls low-level heuristics [4]. The hyper-heuristic
should decide when and where to apply each single low-
level heuristic, depending on the given problem state. The
choice of low-level heuristics may depend on the features of
the problem state, such as CPU time, expected number of
solutions, values on the objective function, etcetera. Select-
ing a particular heuristic is dynamic, and depends on both
the problem state produced by the previous heuristic ap-
plied, and the search space to be explored in that point of
time. Given that the cutting problem has specific features,
constraints and heuristics, this investigation introduces a
method which combines the ideas explained above to tackle
2D-rectangular cutting stock problems. The method assem-
bles a combination of single heuristics (selection and place-

637

ment), and this combination is formed taking into account
the quality of partial solutions provided by the single heuris-
tics defined under the scheme of classifier systems. The clas-
sifiers are evolved using a Genetic Algorithm (GA), with the
aim of proposing better heuristics, for solving the given cut-
ting stock problem.

The paper is organized as follows. Section 2 describes
the cutting stock problem. Section 3 presents the solution
method proposed and its justification. This is followed by
the experimental setup, the results, their analysis and dis-
cussion in section 4. Finally, in section 5 we include our
conclusions and some ideas for future work.

2. THE CUTTING STOCK PROBLEM
The Cutting Stock problem (CuSP) is among the earliest

problems in the literature of operational research. In 1939,
Kantorovich studied obvious applications in all the indus-
tries whose products were in a flat sheet form; this research
was published in 1960 [17]. Since then, there have been
many investigations on the problem, references of which
are in different surveys that describe the CuSP’s develop-
ment and applications, from several points of view: an ab-
stract description of the different solution methods which
have been given to the problem [12]; the evolution of the
problem with the objective of maximal production [13]; the
applications and solutions to the CuSP problem [7]; and the
solution methods of the problem [5].

Given a set L = (a1, a2, ...an) of items to be cut, each one
of size s(ai)ε(0, X], from a set of cutting stock sheets (ob-
jects) of size X, the problem is to find cutting patterns, in
such a way that the solution minimizes the number of used
objects and the trim loss. This NP-problem, can be compli-
cated depending very much on the number of variables, such
as the number of figures, their shapes, the rotation angles,
the maximum number of pieces to cut in an object, number
of dimensions, and color, for example. Due to the diversity
of problems and applications, Dyckhoff [7] has proposed a
very complete and systematic categorization of cutting and
packing problems. His survey integrates a general system of
96 problems for the Cutting Stock with four main features
and their subtypes as follows:

1. Dimensionality: One (1), Two (2), Three (3) or n

2. Assignation form:

(a) All the larger objects and a selection of small fig-
ures (B)

(b) A selection of large objects and all the small fig-
ures (V)

3. Assortment of large objects:

(a) One object (O)

(b) Identical shapes (I)

(c) Different Shapes (D)

4. Assortment of small figures:

(a) Few figures of different shapes (F)

(b) Many figures of different shapes (M)

(c) Many figures of few of different and incongruent
shapes (R)

(d) Congruent shapes (C)

The extension of the CuSP and the objectives of this in-
vestigation restricted the problem to a Cutting Stock Prob-
lem of two dimensions (2). The dimensionality refers to the
cutting action, as the cut will be done in both directions
of length and width in the material. It is assumed that
there are always enough resources to satisfy the demand,
and there will be a total of requested figures cut in a stock
material (V). The stock material will have identical shapes
(I); and the experimentation will be done for rectangular
shapes (C). Then our work will be limited to a 2VIC-Cutting
Stock Problem.

3. SOLUTION APPROACH
In the literature one can see that Evolutionary Compu-

tation has been used in few CuSP investigations. Recently,
Hopper and Turton [15] have presented an empirical study
on the usage of Meta-Heuristics for solving 2D Rectangular
Bin Packing Problems. Evolutionary Computation usually
includes several types of evolutionary algorithms [24]: Ge-
netic Algorithms [14], Evolutionary Strategies [21, 23], and
Evolutionary Programming [1,9]. From these types of Evo-
lutionary Algorithms, Genetic Algorithms were developed
by Holland and his associates in Michigan University be-
tween 1960 and 1970, and the first systematic and theo-
retical treatment is in Holland’s Adaptation in Natural and
Artificial Systems [14]. Later Goldberg [11] gave a summary
of the applications done up to 1989. Recently, many sources
related to the topic have been published [6, 8, 20]. Based
on the same ideas, Holland also developed a learning model
called Learning Classifier System (LCS) which is an evolu-
tionary technique combined with reinforcement learning and
other heuristics to produce adaptive systems. The technique
has been applied to a wide variety of domains such as opti-
mization, design, classification, control and many others [3].
A hyper-heuristic is formed by combining a set of simple
heuristics, and in this research we use a special type of LCS,
called XCS [25], to perform this task.

3.1 The Set of Heuristics Used
In a one dimensional packing problem, the related heuris-

tics refer to the way the pieces are selected and the bins in
which they will be packed. For a two dimensional problem
such as de 2VIC-CuSP, additional difficulty is introduced by
defining the exact location of the figures, that is, where a
particular figure should be placed inside the object. In this
investigation two kinds of heuristics were considered: for se-
lecting the figures and objects, and for placing the figures
into the objects. Some of the heuristics were taken from
the literature, others were adapted, and some other varia-
tions developed by us. We chose the most representative
heuristics in its type, considering their individual perfor-
mance presented in related studies and also in an initial ex-
perimentation on a collection of benchmark problems. The
selection heuristics used in this research are:

• Next Fit (NF).- Use the current object to place the
next piece, otherwise open a new one and place the
piece there.

• First Fit (FF).- Consider the opened objects in increas-
ing order and place the item in the first one where it
fits.

638

• Best Fit (BF).- It places the item in the opened object
where it best fits, that is, in the object that leaves
minimum waste.

• Worst Fit (WF).- It places the item in the opened
object where it worst fits (with the largest available
room).

• Almost Worst Fit (AWF).- It places the item in the
opened object with the second largest available room.

• First Fit Decreasing (FFD).- Sort the pieces in de-
creasing order, and the largest one is placed according
to FF.

• Next Fit Decreasing (NFD).- Sort the pieces in de-
creasing order, and the largest one is placed according
to NF.

• Djang and Fitch (DJD).- It places items in an object,
taking items by decreasing size, until the object is at
least a third full. Then, it initializes w indicating the
allowed waste, and looks for combinations of one, two,
or three items producing a waste w. If any combi-
nation fails, it increases w accordingly. We adapted
this heuristic to consider the initial filling different to
a third, and the combinations for getting the allowed
waste up to five items.

Some of these heuristics are described also in Ross et al. [22]
and Hopper et al. [15].

The placement heuristics belong to the class of bottom-
left heuristics, that is, they keep the bottom-left stability
in the layout. They are based on a sliding technique. The
placement heuristics we used are:

• Bottom-Left (BL) [16].- It starts at the upper corner of
the object, then the piece slides vertically, all the way
down, until it hits another piece, it continues sliding to
the left (in straight line) as far as possible. A sequence
of down and left movements is repeated until the piece
reaches a stable position.

• Improved-Bottom Left (BLLT) [18] .- It is similar to
the above heuristic, but instead of moving the piece all
the way and straight to the left, it keeps sliding it over
the borderline of the bottom pieces until it reaches a
stable position.

Both heuristics were modified to generate two new heuris-
tics in order to consider rotation in the piece to place. These
heuristics are called BLR and BLLTR.

3.2 Combining Heuristics with the XCS
This section first describes in detail the concepts of Learn-

ing Classifier Systems and Hyper-heuristics, and next our
specific model combining both techniques.

3.2.1 LCS and Hyper-heuristics
Classifier Systems (of the Michigan type) evolve a set of

condition-action rules or ’classifiers’ and periodically use a
Genetic Algorithms with the ordinary genetic operators such
as selection, crossover and mutation, to breed new rules from
old ones. What is obtained is a set of rules representing an
adaptive system, that given a change in the environment,
would react accordingly. The LCS interacts with the en-
vironment perceiving situations σ, usually coded as binary

strings of length L, performing actions α, and finding scalar
feedback ρ. Knowledge is represented in a population [P]
of classifiers. The population size is given by the parameter
N .

The system interacts with the environment via detectors
(input) and effectors (actions). The environment also pro-
vides a scalar reinforcement, also called reward. The module
[P] represents a population of classifiers where the left side
consists of the conditions, and the right side indicates the
environmental actions. Given an input a match set [M] is
formed by those classifiers in [P] that match their conditions
with the given situation in the environment. The system
then computes a prediction P (ai) for each action represented
in [M]. Actions are selected from [M] to form an action set
[A]. Several action-selection methods have been studied in
the literature. One action is sent to the effectors and an im-
mediate reward may be returned by the environment. The
most important elements in a classifier system are the Re-
inforcement component, the Discovery component, and the
Fitness calculation scheme. The Reinforcement component
consists of updating the ρ, ε (error on the prediction param-
eter), and F (classifier’s fitness) parameters of classifiers in
the previous action set [A]−1. The discovery component is
based on a Genetic Algorithm working in the match set [M]
to generate new classifiers. The fitness calculation scheme
provides the quantity to update the classifier’s fitness de-
pending on the classifier’s accuracy relative to the accuracies
of the other classifiers in the set.

The concept of hyper-heuristic is motivated by the objec-
tive to provide a more general procedure for optimization [4].
Meta-heuristics methods usually solve problems by operat-
ing directly on the problem. Hyper-heuristics deal with the
process to choose the right heuristic for solving the problem
at hand. The idea is to discover a combination of simple
heuristics that can perform well on a whole range of prob-
lems. For real applications, exhaustive methods are not a
practical approach. The search space might be too large, or
the number and types of constraints may generate a complex
space of feasible solutions. It is common to sacrifice quality
of solutions by using quick and simple heuristics to solve
problems. Many heuristics have been developed for specific
problems. But, is there a single heuristic for a problem that
solve all instances well? The immediate answer is no. Cer-
tain problems may contain features that would make specific
heuristic to work well, but those features may not be suit-
able for other heuristics. The idea with hyper-heuristics is to
combine heuristics in such a way that a heuristic’s strengths
make up for the drawbacks of another.

3.2.2 Proposed Solution Model
The above two concepts were merged to solve 2D cutting

stock problems, following previous work by Ross et al. [22]
for one dimensional bin packing. An XCS type classifier
system was used to form the hyper-heuristics. The block di-
agram of the system is shown in Figure 1. The XCS evolves
a behavior model which determines the possible actions for
all situations or states of the problem. In this particular
model, the actions are given by the selection and placement
heuristics to be applied in a given situation. To find the
appropriate set of rules linking problem states with heuris-
tics, the environment was coded using particular features in
the problem at hand. For example, the environment informs
the classifier system the size of the objects, the amount and

639

ratio of figures to be packed. Then, each classifier associates
the problem state with a selection and placement heuristic,
which are applied until certain condition is met. The process
continues until the problem is completely solved.

A rule determines the relationship between a condition
and an action. The representation of a classifier is shown in
Figure 2. This represents a description of a problem state.
The height, width, area, and the percentage R of items to
be cut in each category is computed.

The condition segment in a classifier has the following
information:

• Height representation

– SH.- Items up to 1/3 of object height

– MH.- Items from 1/3 up to 1/2 of object height

– LH.- Items over 1/2 of object height

• Width representation

– SW.- Items up to 1/3 of object width

– MW.- Items from 1/3 up to 1/2 of object width

– LW.- Items over 1/2 of object width

• Area representation

– SA.- Items up to 1/4 of object area

– MA.- Items from 1/4 up to 1/3 of object area

– LA.- Items from 1/3 up to 1/2 of object area

– HA.- Items over 1/2 of object area

• R.- Ratio of items to be cut

The action segment contains the following information:

• SCH.- Selection Heuristic

• PMH.- Placement Heuristic

Each part was coded into categories according to dimen-
sions in the height, width, and area of objects (small, medium,
and large, and we added huge for area). Each of them has a
proportion of items, shown also in Table 1. The percentages
of items remaining to be cut are shown in Table 2.

The action was selected from all possible combinations of
selection and placement heuristics, taking also into consid-
eration the possibility of rotating an object by 90 degrees.
Those combinations are shown in Table 3.

Table 1: Proportion of items.
Bits Proportion
0 0 0-10%
0 1 10-20%
1 0 20-50%
1 1 50-100%

The general procedure of the method has the following
steps:

• The XCS generates a random population of classifiers.

• The current problem state is matched against those
rules.

Table 2: Percentage of items left to be cut.
Bits % left to be cut
0 0 0 0-14%
0 0 1 14-28%
0 1 1 28-42%
0 1 0 42-56%
1 1 0 56-70%
1 0 0 70-84%
1 1 1 84-100%

Table 3: Representation of actions.
Action Selection Heuristic Placement Heuristic

1 First Fit (FF) Bottom-Left (BL)
2 Bottom-Left Rotate (BLR)
3 Improved Bottom-Left(BLLT)
4 Improved Bottom-Left Rotate(BLLTR)
5 First Fit Decreasing (FFD) Bottom-Left (BL)
6 Bottom-Left Rotate (BLR)
7 Improved Bottom-Left(BLLT)
8 Improved Bottom-Left Rotate(BLLTR)
9 First Fit Increasing (FFI) Bottom-Left (BL)
10 Bottom-Left Rotate (BLR)
11 Improved Bottom-Left(BLLT)
12 Improved Bottom-Left Rotate(BLLTR)
13 Filler+FFD Bottom-Left (BL)
14 Bottom-Left Rotate (BLR)
15 Improved Bottom-Left(BLLT)
16 Improved Bottom-Left Rotate(BLLTR)
17 Next Fit (NF) Bottom-Left (BL)
18 Bottom-Left Rotate (BLR)
19 Improved Bottom-Left(BLLT)
20 Improved Bottom-Left Rotate(BLLTR)
21 Next Fit Decreasing (NFD) Bottom-Left (BL)
22 Bottom-Left Rotate (BLR)
23 Improved Bottom-Left(BLLT)
24 Improved Bottom-Left Rotate(BLLTR)
25 Best Fit (BF) Bottom-Left (BL)
26 Bottom-Left Rotate (BLR)
27 Improved Bottom-Left(BLLT)
28 Improved Bottom-Left Rotate(BLLTR)
29 Best Fit Decreasing (BFD) Bottom-Left (BL)
30 Bottom-Left Rotate (BLR)
31 Improved Bottom-Left(BLLT)
32 Improved Bottom-Left Rotate(BLLTR)
33 Worst Fit (WF) Bottom-Left (BL)
34 Bottom-Left Rotate (BLR)
35 Improved Bottom-Left(BLLT)
36 Improved Bottom-Left Rotate(BLLTR)
37 Djang and Finch (DJD) Bottom-Left (BL)
38 Bottom-Left Rotate (BLR)
39 Improved Bottom-Left(BLLT)
40 Improved Bottom-Left Rotate(BLLTR)

• With the Matching Set and the Prediction Array an
Action Set is formed from which the best classifier is
taken to perform the indicated action (a combination
of selection and placement heuristic). That action is
carried out until an object is completely full or no other
remaining piece fits in that object.

• Reward is applied depending on the selected reinforce-
ment scheme (Single or Multi-Step). In the single-step,
reward is paid after every application of the selected
combination of heuristics, whereas in the multi-step,
the reward is updated after a complete solution is de-
livered.

• Once an instance has been completely solved, the best
classifiers are kept in the population and the solution
process starts again for that instance.

• The procedure continues until a pre-established num-
ber of cycles is reached.

4. RESULTS AND DISCUSSION
This section presents the experiments carried out during

the investigation and the results obtained. These results are
compared against those obtained by the individual heuris-
tics for two kinds of problem instances: the first benchmark

640

XCS

GA
Action Set

A

Effectors

Prediction
array

Match Set
M

Population
P

Detectors

−FF −BF
−FFD −WF
−NF −DJD

Selection
Heuristics

−BL −BLR
−BLLT −BLLTR

Placement
Heuristics

Environment
2D Cutting

Stock
Problem

Action

New state

Reward

Figure 1: Model combining Hyper-Heuristics and the XCS Classifier System.

SH MH LH SW MW LW SA MA LA HA R SCH PMH

Condition Action

Figure 2: Structure of Classifiers.

set was taken from the literature (available from the OR-
Library [2]), and the other one is composed by a set of ran-
domly generated problems for which an optimal solution is
known. The first set is an ensemble of 16 problems (guil-
lotineable, labeled cgcut1 to cgcut3, and gcut1 to gcut13)
plus 12 problems (non-guillotineable, labeled ngcut1 to ng-
cut12). They carry different features, for instance, problem
cgcut1 is composed of very small pieces in comparison to
the size of the objects. cgcut1 has 16 pieces, cgcut2 has 23
pieces, whereas cgcut3 has 62 pieces. These problems have
been also used in other similar studies.

Comparison tables for all problems contain the label for
each problem, the number of pieces n, the continuous lower
bound L0, the best solution proposed in the work by Martello
and Vigo (MaVi) [19], the best result provided by the in-
dividual heuristic (BH), and the results by our approach
SS and MS considering the single-step and multiple-step
reward scheme in a classifier system, respectively. The con-
tinuous lower bound determines the minimum number of ob-
jects needed to satisfy the cutting of the demand of pieces,
and is computed by the following formula:

Lo =

⌈∑n
j=1 hjwj

HW

⌉
(1)

where H represents the object height, W is the width object,
and each one of the pieces jεJ = 1, ..., n has a height hj ≤ H
and width wj ≤ W .

All possible combinations of selection and placement heuris-
tics were run for each instance of the testbed. In the results,
BH is the best result obtained by one of those combinations.
It is important to emphasize that sometimes the best result
is provided by more than one combination, but we do not
have space here to include results on the individual combi-
nations for each problem instance.

Table 4 shows results for the first three problems. Prob-

lems cgcut1 and cgcut2 are rather easy, so that several of
the the individual heuristics, and our approach, solve both
problems with the optimal number of objects. For problem
cgcut3 the lower bound is not reached, but there is an im-
provement with respect to the results reported by Martello
and Vigo, since the number of objects is decreased from 23
to 20.

Table 4: Comparison with results for 2D instances
from the literature.

Problem cgcut1 cgcut2 cgcut3
n 16 23 62
L0 2 2 16

MaVi 2 2 23
BH 2 2 20

HH-XCS-SS 2 2 20
HH-XCS-MS 2 2 20

Results on the next 13 problems (gcut1 to gcut13) are
presented in Table 5. It can be observed that there is a
decrease in the number of objects for problems gcut4, gcut6,
gcut8, and gcut10 with respect to the best heuristic. For
instance, in problem gcut6, the number of objects obtained
with the best heuristic is 7, while our approach reports 6.
Nevertheless, the number of objects is within one from the
continuous lower bound. For problems gcut5, gcut9 and
gcut13, which seem easier, the continuous lower bound is
reached. For the rest of the problems, results are as good
as those reported by the best heuristic, and for some of the
instances, a slight improvement to the results reported by
Martello and Vigo.

Table 6 shows results for the non-guillotineable problems.
There is an improvement for problems ngcut2, ngcut3, ng-
cut10, ngcut11, and ngcut12. For the remaining problems,
our approach performs as good as the best heuristic.

641

Table 5: Comparison with results for 2D instances from the literature.
Problem gc1 gc2 gc3 gc4 gc5 gc6 gc7 gc8 gc9 gc10 gc11 gc12 gc13

n 10 20 30 50 10 20 30 50 10 20 30 50 32
L0 3 5 7 12 3 5 9 12 3 6 7 13 2

MaVi 5 6 8 14 3 7 11 - 3 7 9 16 2
BH 4 6 8 14 3 7 11 14 3 8 8 16 2

HH-XCS-SS 4 6 8 13 3 6 11 13 3 7 8 16 2
HH-XCS-MS 4 6 8 13 3 6 11 13 3 7 8 16 2

Table 6: Comparison with results for 2D instances from the literature.
Problem ngc1 ngc2 ngc3 ngc4 ngc5 ngc6 ngc7 ngc8 ngc9 ngc10 ngc11 ngc12

n 50 17 21 7 14 15 8 13 18 13 15 22
L0 2 3 3 2 3 2 1 2 3 2 2 3

MaVi 3 4 3 2 3 3 1 2 3 3 2 3
BH 3 4 4 2 3 3 2 2 3 3 3 4

HH-XCS-SS 3 3 3 2 3 3 2 2 3 2 2 3
HH-XCS-MS 3 3 3 2 3 3 2 2 3 2 2 3

Additional randomly generated instances were produced
to be fair in the comparison with the other methods. Three
guillotineable problems were generated with 39, 79, and 120
pieces each, and continuous lower bound (which is also the
optimal number of objects) of 5, 10, and 15 objects respec-
tively. Other three non-guillotineable instances were pro-
duced with 33, 54, and 103 pieces each, and with the con-
tinuous lower bound of 5, 10, and 15 objects. Results for this
collection of problems is presented in Table 7. For two of the
non-guillotineable instances the optimal number of objects
is found. Although, there is a decrease in the number of
objects with respect to the best heuristic, the optimal num-
ber of objects was not reached for the rest of the problems.
In general, the solution model presents a reasonable perfor-
mance. The choice of using either the Single or Multi-Step
Reinforcement Scheme makes no difference on the results.

Table 7: Comparison with results for 2D proposed
instances.

Problem G1 G2 G3 NG1 NG2 NG3
n 39 79 120 33 54 103
L0 5 10 15 5 10 15
BH 6 13 19 6 11 16

HH-XCS-SS 6 12 17 5 10 16
HH-XCS-MS 6 12 17 5 10 16

4.1 Analysis on the hyper-heuristics produced
Looking at the results, it is clear in all cases, that the

method to form hyper-heuristics, and the hyper-heuristics
themselves are efficient, at least with respect to the number
of objects used for each instance. This supports again the
statement that non-direct representations for solving diffi-
cult optimization problems seems the right direction when
using GAs. Direct encoding for very large problems requires
long chromosomes. However, it is important to get a bet-
ter feeling of the real advantages or the proposed approach,
and the practical implications of using it. For example, re-
garding the computational cost for delivering solutions by
our approach, it is slightly higher than the time used by the
simple heuristics which run in just few seconds. However, we
found variations in computational cost when comparing the

single and multi-step rewarding mechanism. In general the
single-step is faster than the multi step. For instance, for
a selection of problems in the test sets, an important gap
was observed. For cgcut3, single-step reports 9.4 seconds
whereas multi-step takes 36 seconds. Problem cgcut12 is
the case with the greatest difference since single-step takes
around an hour (3613 seconds) and multi-step needs over
93 hours. For the other cases and even for the randomly
generated instances, results were obtained in a matter of
seconds.

By revising in detail hyper-heuristics which obtained the
best result for each problem instance, it is worth pointing
out that there are single heuristics that repeatedly appear
in the solutions. But it is also interesting to observe that
single heuristics with no very good performance when run
individually, appear in good hyper-heuristics too. For in-
stance, Figure 3 shows the percentage of usage for each
single heuristic combination (labeled 1 to 40, and shown
previously in Table 3) when solving problem cgcut3 with
the single-step mechanism. Good individual combinations
such as Filler+FFD plus BLLTR (16) and NFD plus BLR
(22) are used very often. But all other heuristics also con-
tribute in the solution (except combination 18). This con-
firms the idea behind hyper-heuristics that by exploiting
the problem-specific features by means of choosing a set of
heuristics which best adapt to that, a better performance
can be achieved.

5. CONCLUSIONS AND FUTURE WORK
This document has described experimental results in a

model which uses a classifier system to form hyper-heuristics,
which is a combination of single heuristics. For the 2D-
regular cutting stock problem, combinations of selection and
placement heuristics were used. Overall, the scheme identi-
fies efficiently combinations of heuristics that solve optimally
many of the test instances used.

Ideas for future work involve extending the proposed strat-
egy to solve problems including other kinds of pieces such as
polygonal, irregular, etcetera. It would be also interesting
to work the approach for other multidimensional problems.

642

Figure 3: Selected heuristics by the XCS when solv-
ing problem cgcut3 with the Single-Step Rewarding
Scheme.

6. ACKNOWLEDGMENTS
This research was supported in part by ITESM under the

Research Chair CAT-010 and the CONACYT Project under
grant 41515.

7. REFERENCES
[1] W. Banzhaf, P. Nordin, R. E. Keller, and F. D.

Francone. Genetic programming: An Introduction.
Morgan Kaufmann Publishers, Inc, London, 1998.

[2] J. E. Beasley. Beasley operations research library.
Collection of problems for 2D packing and cutting,
2003.

[3] L. Bull. Applications of Learning Classifier Systems.
Springer, Berlin, 2004.

[4] E. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and
S. Schulenburg. Hyper-heuristics: An emerging
direction in modern research technolology. In
Handbook of Metaheuristics, pages 457–474. Kluwer
Academic Publishers, 2003.

[5] C. H. Cheng, B. R. Fiering, and T. C. Chang. The
cutting stock problem. a survey. International Journal
of Production Economics, 36:291–305, 1994.

[6] L. Davis. Handbook of Genetic Algorithms. Van
Nostrtand Reinhold, New York, 1991.

[7] H. Dyckhoff. A topology of cuting and packing
problems. European Journal of Operation Research,
44:145–159, 1990.

[8] A. E. Eiben and J. E. Smith. Introduction to
Evolutionary Computing. Springer Verlag, Berlin,
2003.

[9] D. B. Fogel, L. A. Owens, and M. Walsh. Artificial
Intelligence through Simulated Evolution. Wiley, New
York, 1966.

[10] M. Garey and D. Johnson. Computers and
Intractability. W.H. Freeman and Company, New
York, 1979.

[11] D. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Adison Wesley,
1989.

[12] B. L. Golden. Approaches to the cutting stock
problem. AIIE Transactions, 8:256–274, 1976.

[13] A. I. Hinxman. The trim-loss and assortment
problems: A survey. EJOR, 5:8–18, 1980.

[14] J. Holland. Adaptation in Natural and Artificial
Systems. The University of Michigan Press, Ann
Arbor, 1975.

[15] E. Hopper and B. C. Turton. An empirical study of
meta-heuristics applied to 2d rectangular bin packing.
Studia Informatica Universalis, pages 77–106, 2001.

[16] S. Jakobs. On genetic algorithms for the packing of
polygons. European Journal of Operations Research,
88:165–181, 1966.

[17] L. V. Kantorovich. Mathematical methods of
organizing and planning production. Management
Science, 6:366–422, 1960.

[18] D. Liu and H. Teng. An improved bl-algorithm for
genetic algorithm of the orthogonal packing of
rectangle. European Journal of Operations Research,
112:413–419, 1999.

[19] S. Martello and D. Vigo. Exact solution of the
two-dimensional finite bin packing problem.
Dipartimento di Elettronica, Informatica e
Sistematica, 1998.

[20] M. Mitchell. An Introduction to Genetic Algorithms.
MIT Press, Cambridge, Massachussets, 1996.

[21] I. Rechenberg. Evolutionstrategie: Optimierung
technischer systeme nach prinzipien dier biolischen
evolution. Frommann-Holzboog, Stuttgart, 1973.

[22] P. Ross, S. Schulenburg, J. M. Blázquez, and E. Hart.
Hyper-heuristics: learning to combine simple
heuristics in bin-packing problems. Proceedings of
GECCO 2002, pages 942–948, 2002.

[23] H. P. Schwefel. Numerical Optimization of Computer
Models. Wiley, Chinchester, UK, 1981.

[24] R. A. Wilson and F. C. Keil. The MIT Encyclopedia
of the Cognitive Science. MIT Press, Cambridge,
Massachussets, 1999.

[25] S. W. Wilson. Classifier fitness based on accuracy.
Evolutionary Computation, pages 149–175, 1995.

643

